On a Symmetric Generalization of Bivariate Sturm–Liouville Problems

نویسندگان

چکیده

Abstract A new class of partial differential equations having symmetric orthogonal solutions is presented. The general equation presented and orthogonality obtained using the Sturm–Liouville approach. Conditions on polynomial coefficients to have admissible are given. case analyzed in detail, providing weight function, three-term recurrence relations for monic solutions, as well explicit form these which an potentially self-adjoint linear second-order hypergeometric type.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

A Generalization of Local Symmetric and Skew-symmetric Splitting Iteration Methods for Generalized Saddle Point Problems

In this paper, we further investigate the local Hermitian and skew-Hermitian splitting (LHSS) iteration method and the modified LHSS (MLHSS) iteration method for solving generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. When A is non-symmetric positive definite, the convergence conditions are obtained, which generalize some results of Jiang and Cao [M.-Q. Jiang and Y. Ca...

متن کامل

On Multivariate Discrete Moment Problems: Generalization of the Bivariate Min Algorithm for Higher Dimensions

The objective of the multivariate discrete moment problem (MDMP) is to find the minimum and/or maximum of the expected value of a function of a random vector with a discrete finite support where the probability distribution is unknown, but some of the moments are given. The moments may be binomial, power, or of a more general type. The MDMP can be formulated as a linear programming problem with...

متن کامل

A Class of Symmetric Bivariate Uniform Distributions

A class of symmetric bivariate uniform distributions is proposed for use in statistical modeling. The distributions may be constructed to be absolutely continuous with correlations as close to ±1 as desired. Expressions for the correlations, regressions and copulas are found. An extension to three dimensions is proposed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Iranian Mathematical Society

سال: 2021

ISSN: ['1018-6301', '1735-8515']

DOI: https://doi.org/10.1007/s41980-021-00605-8